definição e significado de Botanist | sensagent.com


   Publicitade R▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de Botanist

Definição

botanist (n.)

1.a biologist specializing in the study of plants

   Publicidade ▼

Merriam Webster

BotanistBot"a*nist (�), n. [Cf. F. botaniste.] One skilled in botany; one versed in the knowledge of plants.

   Publicidade ▼

Definiciones (más)

definição - Wikipedia

Sinónimos

Ver também

botanist (n.)

botany

Locuções

Alan Cunningham (botanist) • Alexander Gibson (botanist) • Alexander Morrison (botanist) • Allan Cunningham (botanist) • Anders Sandøe Ørsted (botanist) • Andrew Henderson (botanist) • Andrew Murray (botanist) • Arthur Meyer (botanist) • Charles Abbot (botanist) • Charles Alston (botanist) • Charles Clarke (botanist) • Charles Curtis (botanist) • Charles Fraser (botanist) • Charles Wright (botanist) • David Bowman (botanist) • David Burke (botanist) • David Burton (botanist) • David Hunt (botanist) • David Lloyd (botanist) • David Smith (botanist) • Edward Palmer (botanist) • Evan Roberts (botanist) • George Dickie (botanist) • George Forrest (botanist) • George Gordon (botanist) • George King (botanist) • George Lawson (botanist) • George Thomson (botanist) • George Vasey (botanist) • Heinrich Schrader (botanist) • Henry Lyte (botanist) • Henry Shaw (botanist) • Her Majesty's Botanist • Hermann Müller (botanist) • Hugh Davies (botanist) • Hugh Wilson (botanist) • James Anderson (botanist) • James Backhouse (botanist, 1825-1890) • James Backhouse (botanist, 1825–1890) • James Drummond (botanist) • Jens Holmboe (botanist) • John Clayton (botanist) • John Davidson (botanist) • John Day (botanist) • John Fraser (botanist) • John Green (botanist) • John Hill (botanist) • John Horne (botanist) • John Hutchinson (botanist) • John Jeffrey (botanist) • John Martyn (botanist) • John Miers (botanist) • John Parkinson (botanist) • John Smith (botanist) • John Stackhouse (botanist) • John Templeton (botanist) • Karl Koch (botanist) • Ken Hill (botanist) • Martín Cárdenas (botanist) • Michael Rohde (botanist) • Oakes Ames (botanist) • Otto Warburg (botanist) • Paul Rohrbach (botanist) • Paul Thomson (botanist) • Peter Collinson (botanist) • Peter Nielsen (botanist) • Peter Taylor (botanist) • Richard Bradley (botanist) • Richard Pearce (botanist) • Robert Brown (botanist) • Robert Graham (botanist) • Robert Sweet (botanist) • Stephen Elliott (botanist) • The Young Botanist • Thomas Bridges (Botanist) • Thomas Gage (botanist) • Thomas Johnson (botanist) • Thomas Moore (botanist) • Thomas Thomson (botanist) • Thomas Walter (botanist) • Tom Harris (botanist) • Walter Davis (botanist) • Wilhelm Solheim (botanist) • William Arthur (botanist) • William Baldwin (botanist) • William Baxter (botanist) • William Carruthers (botanist) • William Chaloner (botanist) • William Fawcett (botanist) • William Griffith (botanist) • William Hemsley (botanist) • William Herbert (botanist) • William Houstoun (botanist) • William Hudson (botanist) • William Jack (botanist) • William Saunders (botanist) • William Thompson (ornithologist and botanist) • William West (botanist) • William Wood (botanist) • William Wright (botanist)

Dicionario analógico

botanist (n.)


Wikipedia

Botany

From Wikipedia, the free encyclopedia

  (Redirected from Botanist)
Jump to: navigation, search
Example of a cross section of a stem [1]

Botany, plant science(s), phytology, or plant biology is a branch of biology and is the scientific study of plant life and development. Botany covers a wide range of scientific disciplines that study plants, algae, and fungi including: structure, growth, reproduction, metabolism, development, diseases, chemical properties, and evolutionary relationships between the different groups. Botany began with early human efforts to identify edible, medicinal and poisonous plants, making botany one of the oldest sciences. From this ancient interest in plants, the scope of botany has increased to include the study of over 550,000 species of living organisms.

Contents

Scope and importance of botany

As with other life forms in biology, plant life can be studied from different perspectives, from the molecular, genetic and biochemical level through organelles, cells, tissues, organs, individuals, plant populations, and communities of plants. At each of these levels a botanist might be concerned with the classification (taxonomy), structure (anatomy and morphology), or function (physiology) of plant life.

Historically all living things were grouped as animals or plants,[2] and botany covered all organisms not considered animals. Some organisms once included in the field of botany are no longer considered to belong to the plant kingdom – these include fungi (studied in mycology), lichens (lichenology), bacteria (bacteriology), viruses (virology) and single-celled algae, which are now grouped as part of the Protista. However, attention is still given to these groups by botanists, and fungi, lichens, bacteria and photosynthetic protists are usually covered in introductory botany courses.

The study of plants is vital because they are a fundamental part of life on Earth, which generates the oxygen, food, fibres, fuel and medicine that allow humans and other life forms to exist. Through photosynthesis, plants absorb carbon dioxide, a greenhouse gas that in large amounts can affect global climate. Additionally, they prevent soil erosion and are influential in the water cycle. A good understanding of plants is crucial to the future of human societies as it allows us to:

  • Produce food to feed an expanding population
  • Understand fundamental life processes
  • Produce medicine and materials to treat diseases and other ailments
  • Understand environmental changes more clearly

Paleobotanists study ancient plants in the fossil record. It is believed that early in the Earth's history, the evolution of photosynthetic plants altered the global atmosphere of the earth, changing the ancient atmosphere by oxidation.

Human nutrition

Nearly all the food we eat comes (directly and indirectly) from plants like this American long grain rice

Virtually all foods eaten come from plants, either directly from staple foods and other fruit and vegetables, or indirectly through livestock or other animals, which rely on plants for their nutrition. Plants are the fundamental base of nearly all food chains because they use the energy from the sun and nutrients from the soil and atmosphere, converting them into a form that can be consumed and utilized by animals; this is what ecologists call the first trophic level. Botanists also study how plants produce food we can eat and how to increase yields and therefore their work is important in mankind's ability to feed the world and provide food security for future generations, for example, through plant breeding. Botanists also study weeds, plants which are considered to be a nuisance in a particular location. Weeds are a considerable problem in agriculture, and botany provides some of the basic science used to understand how to minimize 'weed' impact in agriculture and native ecosystems. Ethnobotany is the study of the relationships between plants and people.

Fundamental life processes

Plants are convenient organisms in which fundamental life processes (like cell division and protein synthesis) can be studied, without the ethical dilemmas of studying animals or humans. The genetic laws of inheritance were discovered in this way by Gregor Mendel, who was studying the way pea shape is inherited. What Mendel learned from studying plants has had far reaching benefits outside of botany. Additionally, Barbara McClintock discovered 'jumping genes' by studying maize. These are a few examples that demonstrate how botanical research has an ongoing relevance to the understanding of fundamental biological processes.

Medicine and materials

Many medicinal and recreational drugs, like tetrahydrocannabinol, caffeine, and nicotine come directly from the plant kingdom. Others are simple derivatives of botanical natural products; for example, aspirin is based on the pain killer salicylic acid which originally came from the bark of willow trees. As well, the narcotic analgesics such as morphine are derived from the opium poppy.[3]There may be many novel cures for diseases provided by plants, waiting to be discovered. Popular stimulants like coffee, chocolate, tobacco, and tea also come from plants. Most alcoholic beverages come from fermenting plants such as barley (beer), rice (sake) and grapes (wine).

Plants also provide us with many natural materials, such as hemp, cotton, wood, paper, linen, vegetable oils, some types of rope, and rubber. The production of silk would not be possible without the cultivation of the mulberry plant. Sugarcane, rapeseed, soy and other plants with a highly-fermentable sugar or oil content have recently been put to use as sources of biofuels, which are important alternatives to fossil fuels (see biodiesel).

Environmental changes

Plants can also help us understand changes in on our environment in many ways.

In many different ways, plants can act a little like the 'miners' canary', an early warning system alerting us to important changes in our environment. In addition to these practical and scientific reasons, plants are extremely valuable as recreation for millions of people who enjoy gardening, horticultural and culinary uses of plants every day.

Etymology

From Greek βοτάνη = "pasture, grass, fodder", perhaps via the idea of a livestock keeper needing to know which plants are safe for livestock to eat.

History

The traditional tools of a botanist

Early botany

Ancient India

Early examples of plant taxonomy occur in the Rigveda, that divides plants into Vṛska (tree), Osadhi (herbs useful to humans) and Virudha (creepers), which are then further subdivided. The Atharvaveda divides plants into eight classes, Visakha (spreading branches), Manjari (leaves with long clusters), Sthambini (bushy plants), Prastanavati (which expands); Ekasṛnga (those with monopodial growth), Pratanavati (creeping plants), Amsumati (with many stalks), and Kandini (plants with knotty joints). The Taittiriya Samhita classifies the plant kingdom into vṛksa, vana and druma (trees), visakha (shrubs with spreading branches), sasa (herbs), amsumali (a spreading or deliquescent plant), vratati (climber), stambini (bushy plant), pratanavati (creeper), and alasala (those spreading on the ground).

Manusmriti – Law book of Hindus – proposed a classification of plants in eight major categories. Charaka Samhitā and Sushruta Samhita and the Vaisesikas also present an elaborate taxonomy.

Parashara, the author of Vṛksayurveda (the science of life of trees), classifies plants into Dvimatrka (Dicotyledons) and Ekamatrka (Monocotyledons). These are further classified into Samiganiya (Fabaceae), Puplikagalniya (Rutaceae), Svastikaganiya (Cruciferae), Tripuspaganiya (Cucurbitaceae), Mallikaganiya (Apocynaceae), and Kurcapuspaganiya (Asteraceae).[4]

Important medieval Indian works of plant physiology include the Prthviniraparyam of Udayana, Nyayavindutika of Dharmottara, Saddarsana-samuccaya of Gunaratna, and Upaskara of Sankaramisra.[4]

Ancient China

In ancient China, the recorded listing of different plants and herb concoctions for pharmaceutical purposes spans back to at least the Warring States (481 BC-221 BC). Many Chinese writers over the centuries contributed to the written knowledge of herbal pharmaceutics. There was the Han Dynasty (202 BC-220 AD) written work of the Huangdi Neijing and the famous pharmacologist Zhang Zhongjing of the 2nd century. There was also the 11th century scientists and statesmen Su Song and Shen Kuo, who compiled treatises on herbal medicine and included the use of mineralogy.

Greco-Roman world

Among the earliest of botanical works in Europe, written around 300 B.C., are two large treatises by Theophrastus: On the History of Plants (Historia Plantarum) and On the Causes of Plants. Together these books constitute the most important contribution to botanical science during antiquity and on into the Middle Ages. Aristotle also wrote about plants. One theory about plants that Greco-Romans came up with about plants was that they ate soil for nutrients.[5]

The Roman medical writer Pedanius Dioscorides (ca.40-90) provides important evidence on Greek and Roman knowledge of medicinal plants. Dioscorides is famous for writing a five volume book in his native Greek Περί ύλης ιατρικής (De Materia Medica - in the Latin translation) that is one of the most influential herbal books in history. In fact, it remained in use until about CE 1600.[6] Approximately 1300-1400 different plant species were known under Roman reign.[7]

Medieval botany

The Persian biologist Abū Ḥanīfa Dīnawarī (828-896) is considered the founder of Arabic botany for his Book of Plants, in which he described at least 637 plants and discussed plant development from germination to death, describing the phases of plant growth and the production of flowers and fruit.[8]

Theophrastus’s Historia Plantarum served as a reference point in botany for many centuries, and was further developed around 1200 by Giovanni Bodeo da Stapelio, who added a commentarius and drawings: see Historia Plantarum —Selected pages of a 17th century edition of the 1200 version (in Italian).

In the early 13th century, the Andalusian-Arabian biologist Abu al-Abbas al-Nabati developed an early scientific method for botany, introducing empirical and experimental techniques in the testing, description and identification of numerous materia medica, and separating unverified reports from those supported by actual tests and observations.[9] His student Ibn al-Baitar (d. 1248) wrote a pharmaceutical encyclopedia describing 1,400 plants, foods, and drugs, 300 of which were his own original discoveries. A Latin translation of his work was useful to European biologists and pharmacists in the 18th and 19th centuries.[10]

Early modern botany

Crantz's Classis cruciformium..., 1769

German physician Leonhart Fuchs (1501–1566) was one of the three founding fathers of botany, along with Otto Brunfels (1489-1534) and Hieronymus Bock (1498–1554) (also called Hieronymus Tragus).[11]

Valerius Cordus (1515–1554) authored one of the greatest pharmacopoeias and one of the most celebrated herbals in history, Dispensatorium (1546).[12] As early as the 16th century, the Italian Ulisse Aldrovandi was scientifically researching plants. In 1665, using an early microscope, Robert Hooke discovered cells in cork, and a short time later in living plant tissue. The Germans Jacob Theodor Klein and Leonhart Fuchs, the Swiss Conrad von Gesner, and the British author Nicholas Culpeper published herbals that gave information on the medicinal uses of plants.

During the 18th century systems of classification became deliberately artificial and served only for the purpose of identification. These classifications are comparable to diagnostic keys, where taxa are artificially grouped in pairs by few, easily recognisable characters. The sequence of the taxa in keys is often totally unrelated to their natural or phyletic groupings. In the 18th century an increasing number of new plants had arrived in Europe, from newly discovered countries and the European colonies worldwide, and a larger amount of plants became available for study.

In 1754 Carl von Linné (Carl Linnaeus) divided the plant Kingdom into 25 classes. One, the Cryptogamia, included all the plants with concealed reproductive parts (algae, fungi, mosses and liverworts and ferns).[13]

The increased knowledge on anatomy, morphology and life cycles, lead to the realization that there were more natural affinities between plants, than the sexual system of Linnaeus indicated. Adanson (1763), Jussieu (1789), and Candolle (1819) all proposed various alternative natural systems that were widely followed. The ideas of natural selection as a mechanism for evolution required adaptations to the Candollean system, which started the studies on evolutionary relationships and phylogenetic classifications of plants.

Modern botany

A considerable amount of new knowledge today is being generated from studying model plants like Arabidopsis thaliana. This weedy species in the mustard family was one of the first plants to have its genome sequenced. The sequencing of the rice (Oryza sativa) genome, its relatively small genome, and a large international research community have made rice an important cereal/grass/monocot model.[14] Another grass species, Brachypodium distachyon is also emerging as an experimental model for understanding the genetic, cellular and molecular biology of temperate grasses. Other commercially-important staple foods like wheat, maize, barley, rye, pearl millet and soybean are also having their genomes sequenced. Some of these are challenging to sequence because they have more than two haploid (n) sets of chromosomes, a condition known as polyploidy, common in the plant kingdom. Chlamydomonas reinhardtii (a single-celled, green alga) is another plant model organism that has been extensively studied and provided important insights into cell biology.

In 1998 the Angiosperm Phylogeny Group published a phylogeny of flowering plants based on an analysis of DNA sequences from most families of flowering plants. As a result of this work, major questions such as which families represent the earliest branches in the genealogy of angiosperms are now understood. Investigating how plant species are related to each other allows botanists to better understand the process of evolution in plants.

Subdisciplines of botany

Notable botanists

  • Ibn al-Baitar (d. 1248), Andalusian-Arab scientist, botanist, pharmacist, physician, and author of one of the largest botanical encyclopedias.
  • Aimé Bonpland (1773–1858), French explorer and botanist, who accompanied Alexander von Humboldt during five years of travel in Latin America.
  • Luther Burbank (1849–1926), American botanist, horticulturist, and a pioneer in agricultural science.
  • Augustin Pyramus de Candolle He originated the idea of "Nature's war", which influenced Charles Darwin.
  • Abū Ḥanīfa Dīnawarī (828-896), Persian botanist, historian, geographer, astronomer, mathematician, and founder of Arabic botany.
  • David Douglas (1799–1834), Scottish botanical explorer of North America and China, who imported many ornamental plants into Europe.
  • Joseph Dalton Hooker (1817–1911), English botanist and explorer. Second winner of Darwin Medal.
  • Thomas Henry Huxley (1825–1895), English biologist, known as "Darwin's Bulldog" for his advocacy of Charles Darwin's theory of evolution. Third winner of Darwin Medal.
  • Carl Linnaeus (1707–1778), Swedish botanist, physician and zoologist who laid the foundations for the modern scheme of Binomial nomenclature. He is known as the father of modern taxonomy, and is also considered one of the fathers of modern ecology.
  • Gregor Johann Mendel (1822–1884), Augustinian priest and scientist, and is often called the father of genetics for his study of the inheritance of traits in pea plants.
  • Carlos Muñoz Pizarro, Chilean botanist, known for his studies of the Chilean flora, and its conservation.
  • Abu al-Abbas al-Nabati (c. 1200), Andalusian-Arab botanist and agricultural scientist, and a pioneer in experimental botany.
  • Richard Spruce (1817–1893), English botanist and explorer who carried out a detailed study of the Amazon flora.
  • Agustín Stahl (1842–1917), conducted investigations and experiments in the fields of ethnology, and zoology in the Caribbean region.
  • George Ledyard Stebbins, Jr. Widely regarded as one of the leading evolutionary biologists of the 20th century, developed a comprehensive synthesis of plant evolution incorporating genetics.
  • Theophrastus (c. 371 – c. 287 BC) - Father of Botany, established botanical science through his lecture notes, Enquiry into Plants.
  • Leonardo da Vinci (1452–1519), Italian polymath; a scientist, mathematician, engineer, inventor, anatomist, painter, sculptor, architect, botanist, musician and writer.

See also

References

Notes

  1. ^ Winterborne J, 2005. Hydroponics - Indoor Horticulture
  2. ^ Chapman, Jasmin, et al.. Science Web. Nelson Thornes. pp. 56. ISBN 0-17-438746-6. 
  3. ^ Mann, J. (1987). Secondary Metabolism, 2nd ed.. Oxford: Oxford University Press. pp. 186–187. ISBN 0-19-855529-6. 
  4. ^ a b Ancient Indian Botany and Taxonomy
  5. ^ Botany - History of botany
  6. ^ Timeline: Pedanius Dioscorides, c. 40–90 CE
  7. ^ Botany online: The History of a Science
  8. ^ Fahd, Toufic. [Expression error: Missing operand for > "Botany and agriculture"]. pp. 815. , in Morelon, Régis; Rashed, Roshdi (1996), [Expression error: Missing operand for > Encyclopedia of the History of Arabic Science], 3, Routledge, ISBN 0415124107 
  9. ^ Huff, Toby (2003). The Rise of Early Modern Science: Islam, China, and the West. Cambridge University Press. p. 218. ISBN 0521529948. 
  10. ^ Boulanger, Diane (2002) "The Islamic Contribution to Science, Mathematics and Technology", OISE Papers, in STSE Education, Vol. 3.
  11. ^ Early herbals – The German fathers of botany
  12. ^ Valerius Cordus | Science and Its Times: 1450-1699 Summary
  13. ^ Hoek, C. van den, Mann, D.G. and Jahns, H.M. 2005. Algae: An Introduction to Phycology. Cambridge University Press, Cambridge. ISBN 0 521 30419 9
  14. ^ Devos, Katrien M.; Gale, MD (2000). "Genome Relationships: The Grass Model in Current Research" (free full text). The Plant Cell 12 (5): 637. doi:10.2307/3870991. PMID 10810140. PMC 139917. http://www.plantcell.org/cgi/content/full/12/5/637. 

Bibliography

Popular science

  • Attenborough, David The Private Life of Plants, ISBN 0-563-37023-8
  • Bellamy, David Bellamy on Botany, ISBN 0-563-10666-2 An accessible and short introduction to various botanical subjects
  • Capon, B: Botany for Gardeners ISBN 0-88192-655-8
  • Cohen, J. How many people can the earth support? London: W. W. Norton 1995 ISBN 0-393-31495-2
  • Halle, Francis. In Praise of Plants. ISBN 0-88192-550-0. English translation of a poetic advocacy of plants.
  • King, J. Reaching for the sun: How plants work ISBN 0-521-58738-7 A fluent introduction to how plants work
  • Pakenham, Thomas (2002) Remarkable Trees of the World ISBN 0-297-84300-1
  • Pakenham, Thomas (1996) Meetings with Remarkable Trees ISBN 0-297-83255-7
  • Pollan, M. The Botany of Desire: a plant's-eye view of the world. London: Bloomsbury ISBN 0-7475-6300-4 Account of the co-evolution of plants and humans
  • Thomas, B. A. (1981) The evolution of plants and flowers New York: St Martin's Press ISBN 0-312-27271-5
  • Walker, D. Energy, Plants and Man ISBN 1-870232-05-4 A presentation of the basic concepts of photosynthesis

Academic and scientific

  • Crawford, R. M. M. (1989). Studies in Plant Survival. Oxford: Blackwell ISBN 0-632-01475-X
  • Matthews, R. E. F. Fundamentals of plant virology Academic Press,1992.
  • Mauseth, J. D.: Botany : an introduction to plant biology. Jones and Bartlett Publishers, ISBN 0-7637-2134-4, A first year undergraduate level textbook
  • Morton, A. G. (1981). History of Botanical Science.Academic Press, London. ISBN 0-12-508380-7 (hardback) ISBN 0-12-508382-3 (paperback)
  • Raven, Peter H., Evert, Ray H. and Eichhorn, Susan E. (2005) Biology of Plants; 7th ed. New York: W. H. Freeman ISBN 1-57259-041-6 (A first year undergraduate level textbook; 1st ed. by Peter H. Raven; Helena Curtis. [New York]: Worth, 1970; 6th ed. 1999)
  • Ridge, I. (2002) Plants Oxford University Press ISBN 0-19-925548-2
  • Strange, R. L. (2003) Introduction to plant pathology. Weinheim: Wiley-VCH ISBN 0-470-84973-8
  • Walter, H. (1985) Vegetation of the earth; 3rd rev. ed. Springer.
  • Willis, K. (2002) The Evolution of Plants. Oxford University Press ISBN 0-19-850065-3 £22-99
Environmental botany
  • Crawley, M. J. (1997). Plant ecology. Blackwell Scientific ISBN 0-632-03639-7
  • Ennos, Roland and Sheffield, Elizabeth Plant Life. Oxford: Blackwell Science ISBN 0-86542-737-2 Introduction to plant biodiversity
  • Everitt, J. H.; Lonard, R. L., Little, C. R. (2007). Weeds in South Texas and Northern Mexico. Lubbock: Texas Tech University Press. ISBN 0896726142.  ISBN 0-89672-614-2
  • Richards, P. W. (1996). The Tropical Rainforest. 2nd ed. Cambridge U. P. (Pbk) ISBN 0-521-42194-2 £32.50
  • Stace, C. A. (1997) A New Flora of the British Isles. 2nd ed. Cambridge U. P. ISBN 0-521-58935-5
Plant physiology
  • Bowsher, C. G., Steer, M. W. & Tobin, A. K. (2008) Plant Biochemistry. New York & Abingdon: Garland Science, Taylor & Francis Group ISBN 0-8153-4121-0
  • Buchanan, B. B., Gruissem, W. & Jones, R. L. (2000) Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists ISBN 0-943088-39-9
  • Fitter, A. & Hay, R. Environmental Physiology of Plants; 3rd edition. New York: Harcourt Publishers, Academic Press ISBN 0-12-257766-3
  • Lambers, Hans, Chapin, F. Stuart, III and Pons, Thijs L. (1998) Plant Physiological Ecology. New York: Springer-Verlag ISBN 0-387-98326-0
  • Lawlor, D. W. (2000) Photosynthesis BIOS ISBN 1-85996-157-6
  • Salisbury, F. B. and Ross, C. W. (1992) Plant Physiology; 4th ed. Belmont, Calif: Wadsworth ISBN 0-534-15162-0
  • Taiz, Lincoln & Zeiger, Eduardo (1991) Plant Physiology. Redwood City, Calif.: Benjamin/Cummings
    • 3rd ed. Sunderland, Mass: Sinauer Associates, 2002 ISBN 0-87893-823-0
    • 4th ed. Sunderland, Mass: Sinauer Associates, 2006 ISBN 9780878938568

External links

Biology portal

Flora and other plant catalogs or databases


 

todas as traduções do Botanist


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

3897 visitantes em linha

calculado em 0,047s