definição e significado de Parvovirus | sensagent.com


   Publicitade R▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de Parvovirus

Definição

parvovirus (n.)

1.any of a group of viruses containing DNA in an icosahedral protein shell and causing disease in dogs and cattle; not known to be associated with any human disease

Parvovirus (n.)

1.(MeSH)A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, infecting a variety of vertebrates including humans. Parvoviruses are responsible for a number of important diseases but also can be non-pathogenic in certain hosts. The type species is MINUTE VIRUS OF MICE.

   Publicidade ▼

Definiciones (más)

definição - Wikipedia

Sinónimos

   Publicidade ▼

Locuções

Dicionario analógico

Parvovirus (n.) [MeSH]

Parvovirinae[Hyper.]


parvovirus (n.)

animal virus[Classe]

animal virus[Hyper.]


Wikipedia

Parvovirus

                   

Parvovirus, sometimes truncated to "parvo", is both the common name in English casually applied to all the viruses in the Parvoviridae taxonomic family and also the taxonomic name of the Parvovirus genus within the Parvoviridae family. This creates a confusion of terms, because parvoviruses which causes human and animal diseases are not in the genus Parvovirus, though they are casually called parvoviruses. Parvoviruses are typically linear, non-segmented single-stranded DNA viruses, with an average genome size of 5000 nucleotides. Parvoviruses are some of the smallest viruses (hence the name, from Latin parvus meaning small) and are 18–26 nm in diameter.[1]

Many types of mammalian species have a strain of parvovirus associated with them. Parvoviruses tend to be specific about the taxon of animal they will infect, but this is a somewhat flexible characteristic. Thus, all strains of canine parvovirus will affect dogs, wolves, and foxes, but only some of them will infect cats.

No members of the genus Parvovirus are currently known to infect humans, but humans can be infected by viruses within three other genera from the family Parvoviridae, including the one popularly known by the common name Parvovirus B19. These are the Dependoviruses (e.g. Adeno-Associated Virus), the Erythroviruses (e.g. Parvovirus B19) and the Bocaviruses.[citation needed]

Contents

  Structure

The viral capsid of a parvovirus is made up of two or three proteins, known as VP1-3 that form an icosahedral structure that is resistant to acids, bases, solvents and temperature up to 50°C (122 degrees Fahrenheit).

Inside the capsid is a single-stranded DNA genome. At the 5’ and 3’ ends of this genome are palindromic sequences of approximately 120 to 250 nucleotides, that form hairpins and are essential for viral genome replication.

  Disease information on Parvoviridae

The remainder of this article discusses the disease-causing Parvoviridae viri, rather than the members of the Parvovirus genus.

  Diseases from Parvoviridae family (but not Parvovirus genus)

  Micrograph showing a parvovirus infected nucleated (fetal) red blood cells. H&E stain.

Parvoviruses can cause disease in some animals. Because the viruses require actively dividing cells in order to replicate, the type of tissue infected varies with the age of the animal. The gastrointestinal tract and lymphatic system can be affected at any age, leading to vomiting, diarrhea and immunosuppression, but cerebellar hypoplasia is only seen in cats that were infected in the womb or at less than two weeks of age, and disease of the myocardium is seen in puppies infected between the ages of three and eight weeks.[2]

Canine parvovirus is a particularly deadly disease among young puppies, about 80% fatal, causing gastrointestinal tract damage and dehydration as well as a cardiac syndrome in very young pups. It is spread by contact with an infected dog's feces. Symptoms include lethargy, severe diarrhea, fever, vomiting, loss of appetite, and dehydration. Mouse parvovirus 1, however, causes no symptoms but can contaminate immunology experiments in biological research laboratories. Porcine parvovirus causes a reproductive disease in swine known as SMEDI, which stands for stillbirth, mummification, embryonic death, and infertility. Feline panleukopenia is common in kittens and causes fever, low white blood cell count, diarrhea, and death. Infection of the cat fetus and kittens less than two weeks old causes cerebellar hypoplasia. Mink enteritis virus is similar in effect to feline panleukopenia, except that it does not cause cerebellar hypoplasia. A different parvovirus causes Aleutian Disease in minks and other mustelids, characterized by lymphadenopathy, splenomegaly, glomerulonephritis, anemia, and death. The most accurate diagnosis of parvovirus is by ELISA. Dogs, cats and swine can be vaccinated against parvovirus.

Parvovirus B19, which causes fifth disease in humans, is a member of the Erythrovirus genus of the Parvoviridae.

In humans the P antigen (also known as globoside) is the cellular receptor for parvovirus B19 virus that causes Erythema infectiosum (fifth disease) in children. This infection is sometimes complicated by severe aplastic anemia caused by lysis of early erythroid precursors.

  Replication as Disease Vector

To enter host cells, parvoviruses bind to a sialic acid-bearing cell surface receptor. Penetration into the cytoplasm is mediated by a phospholipase A2 activity carried on the amino-terminal peptide of the capsid VP1 polypeptide. Once in the cytoplasm, the intact virus is translocated to the nucleus prior to uncoating. Transcription only initiates when the host cell enters S-phase under its own cell cycle control, at which time the cell's replication machinery converts the incoming single strand into a duplex transcription template, allowing synthesis of mRNAs encoding the non-structural proteins, NS1 and NS2. The mRNAs are transported out of the nucleus into the cytoplasm where the host ribosomes translate them into viral proteins. Viral DNA replication proceeds through a series of monomeric and concatemeric duplex intermediates by a unidirectional strand-displacement mechanism that is mediated by components of the host replication fork, aided and orchestrated by the viral NS1 polypeptide. NS1 also transactivates an internal transcriptional promoter that directs synthesis of the structural VP polypeptides. Once assembled capsids are available, replication shifts from synthesizing duplex DNA to displacement of progeny single strands, which are typically negative-sense and are packaged in a 3'-to-5' direction into preformed particles within the nucleus. Mature virions may be released from infected cells prior to cell lysis, which promotes rapid transmission of the virus, but if this fails then the virus is released at cell lysis.

Unlike most other DNA viruses, parvoviruses are unable to activate DNA synthesis in host cells. Thus, in order for viral replication to take place the infected cells must be non-quiescent (i.e. must be actively mitotic). Their inability to force host cells into S-phase means that parvoviruses are non-tumorigenic. Indeed they are commonly oncolytic, showing a strong tendency to replicate preferentially in cells with transformed phenotypes.

  Use of HeLa cells in Parvo Virus testing

Testing for how feline parvo virus and canine parvo virus infect cells and what pathways are taken; scientists used cat cells, mouse cells, cat and mouse hybrid cells, mink cells, dog cells, human cells, and HeLa cells.[3] Both feline parvo virus and canine parvo virus enter their hosts, follow specific pathways, and infect at certain parts of cells before infecting major organs. Parvo viruses are specific viruses that are determined by what receptors they attack.[4] Testing found that parvo virus infects carnivorous animals through the oropharyngeal pathway. Parvo virus infects the oropharyngeal cells that come in immediate contact with the virus. Parvo virus contains a plasmid that infects and binds to transferrin receptors, a glycoprotein, on the plasma membrane.[5] [6] The parvo virus plasmid is stored in a small non- enveloped capsid.[5][7] Once oropharyngeal cells become infected the virus spreads to dividing lymph cells and continues to work to the bone marrow and spread to target organs through blood.

Testing of HeLa cells and human cells to exposure of both feline parvo virus and canine parvo virus resulted in infections of the cells at human transferrin receptors.[3] When anti-bodies and parvo virus samples were added at the same time to human cells and HeLa cells it was found that no infection would take place; experiments showed that both human cells and HeLa cells have transferrin receptors but there is no evidence of humans contracting parvo virus.

Certain chromosomes in cells show more susceptibility to parvo virus than others. Testing of feline parvo virus on cat cells and cat mouse hybrid cells found cultures with cells having the highest concentrations of the C2 chromosome were the most highly infected cells.[3] Slight mutations of binding sites were found to slow down or completely stop the infection of the given parvo virus; whereas cells that are naturally missing the receptors or are mutated to not have them cannot be mutated.[6] Both feline parvo virus and canine parvo virus express plasticity during cellular infection.[7] [8] Although transferrin receptors may be limited on cell surfaces the parvo viruses will find available transferrin receptors and will use different pathways to gain entry to the cells plasma membrane. Unlike plasma membrane infection plasticity, all strains of parvo virus show related routes to the cell nucleus.

Canine parvo virus is a mutated strain of feline parvo virus.[3][4][5] The conditions needed for the mutation had to be perfect for the virus to change species of infection. The mutation occurred in the capsid proteins of feline parvo virus that gave it the ability to infect dogs.[6] Both viruses remain similar so once the mutation occurred strains of canine parvo virus had a tradeoff of becoming more receptive to canine cells and less receptive to feline cells; only mutated feline parvo virus, the canine parvo virus, can infect both species of cats and dogs cells but standard un- mutated feline parvo virus can only infect feline cells. Both feline parvo virus and canine parvo virus bind to and infect the transferrin receptors but both have different sequences in the cells and animals. Infection by both feline parvo virus and canine parvo virus are relatively quick; but because of constant mutation of canine parvo virus, canine parvo virus has a slower infection time than feline parvo virus.[7] Studies of other strains of mutated canine parvo virus have revealed that changes in the viral capsid by just one protein can be fatal to the virus. Wrong mutations have been noted to lead to inability to bind to transferrin receptors, bind to non- receptive parts of the cell membrane, and identification of the virus by the host’s antibody cells.[8]

  See also

  References

  1. ^ Leppard, Keith; Nigel Dimmock; Easton, Andrew (2007). Introduction to Modern Virology. Blackwell Publishing Limited. p. 450. ISBN 1-4051-3645-6. 
  2. ^ Fenner, Frank J.; Gibbs, E. Paul J.; Murphy, Frederick A.; Rott, Rudolph; Studdert, Michael J.; White, David O. (1993). Veterinary Virology (2nd ed.). Academic Press, Inc. ISBN 0-12-253056-X. 
  3. ^ a b c d Parker, J; Murphy W, Wang D, O'Brien S, Parrish C (2001). "Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells". Journal of Virology 75 (8): 3896- 3902. 
  4. ^ a b Ross, S; Schofield J, Farr C, Bucan M (2002). "Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus". Proceedings of the National Academy of Sciences of the United States of America 99 (19): 12386- 12390. 
  5. ^ a b c Heuffer, K; Parker J, Weichert W, Geisel R, Sgro J, Parrish C (2003). "The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor". Journal of Virology 77 (3): 1718- 1726. 
  6. ^ a b c Goodman, L; Lyi A, Johnson N, Cifuente J, Hafenstein S, Parrish C (2010). "Binding site on the transferrin receptor for the parvovirus capsid and effects of altered affinity on cell uptake and infection". Journal of Virology 84 (10): 4969- 4978. 
  7. ^ a b c Harbison, C; Lyi S, Weichert W, Parrish C (2009). "Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking". Journal of Virology 83 (20): 10504- 10514. 
  8. ^ a b Nelson, C; Minkkinen E, Bergkvist M, Hoelzer K, Fisher M, Bothner B, Parrish (2008). "Detecting small changes and additional peptides in the canine parvovirus capsid structure". Journal of Virology 82 (21): 10397- 10407. 

  Further reading

Feline Parvovirus by Cats Protection

  External links

   
               

 

todas as traduções do Parvovirus


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

11595 visitantes em linha

calculado em 0,047s