definição e significado de Ploidy | sensagent.com


   Publicitade D▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de Ploidy

Definição

definição - Wikipedia

   Publicidade ▼

Locuções

-ploidy

Wikipedia

Ploidy

                   
  Diploid cells have two homologous copies of each chromosome.

Ploidy is the number of sets of chromosomes in a biological cell.

Human sex cells (sperm and egg) have one complete set of chromosomes from the male or female parent. Sex cells, also called gametes, combine to produce somatic cells. Somatic cells, therefore, have twice as many chromosomes. The haploid number (n) is the number of chromosomes in a gamete. A somatic cell has twice that many chromosomes (2n).

Humans are diploid. A human somatic cell contains 46 chromosomes: 2 complete haploid sets, which make up 23 homologous chromosome pairs. However, many organisms have more than two sets of homologous chromosomes and are called polyploid.

The number of chromosomes in a single (non-homologous) set is called the monoploid number (x), and is distinct from the haploid number (n). Both numbers n, and x, apply to every cell of a given organism. For humans, x = n = 23, which is also written as 2n = 2x = 46. Bread wheat is an organism where x and n differ. It has six sets of chromosomes, two sets from each of three different diploid species that are its distant ancestors. The somatic cells are hexaploid, with six sets of chromosomes, 2n = 6x = 42. The gametes are both haploid and triploid, with three sets of chromosomes. The monoploid number x = 7, and the haploid number n = 21.

Tetraploidy (four sets of chromosomes, 2n = 4x) is common in plants, and also occurs in amphibians, reptiles, and insects.

The Australian bulldog ant, Myrmecia pilosula, a haplodiploid species, has n = x = 1, the lowest chromosome number theoretically possible.[1] Haploid individuals of this species have a single chromosome, and diploid individuals have two chromosomes.

Euploidy is the state of a cell or organism having an integral multiple of the monoploid number, possibly excluding the sex-determining chromosomes. For example, a human cell has 46 chromosomes, which is an integer multiple of the monoploid number, 23. A human with abnormal, but integral, multiples of this full set (e.g. 69 chromosomes) would also be considered as euploid. Aneuploidy is the state of not having euploidy. In humans, examples include having a single extra chromosome (such as Down syndrome), or missing a chromosome (such as Turner syndrome). Aneuploid karyotypes are given names with the suffix -somy (rather than -ploidy, used for euploid karyotypes), such as trisomy and monosomy.

Contents

  Etymology

The term ploidy is a back-formation from haploid and diploid. These two terms are from Greek ἁπλόος haplóos "single" and διπλόος diplóos "double" combined with εἶδος eîdos "form" (compare idol from Latin īdōlum, that from Greek εἴδωλον eídōlon derived from εἶδος eîdos). The two haploid and diploid terms were borrowed from German through William Henry Lang's 1908 translation of a 1894 textbook by Eduard Strasburger and colleagues.[2] Strasburger used diploid to refer to an organism with twice the number of chromosomes of a haploid organism, hence "double" and "single".

  Haploid and monoploid

The haploid number (n) is the number of chromosomes in a gamete of an individual. This is distinct from the monoploid number (x), which is the number of unique chromosomes in a single complete set. Gametes (sperm, and ova) are haploid cells. The haploid gametes produced by (most) diploid organisms are monoploid, and these can combine to form a diploid zygote. For example, most animals are diploid and produce monoploid gametes.

During meiosis, sex cell precursors have their number of chromosomes halved by randomly "choosing" one homologue, resulting in haploid gametes. Because homologous chromosomes usually differ genetically, gametes usually differ genetically from one another.

All plants and many fungi and algae switch between a haploid and a diploid state (which may be polyploid), with one of the stages emphasized over the other. This is called alternation of generations. Most fungi and algae are haploid during the principal stage of their lifecycle.

Male bees, wasps, and ants are haploid organisms because of the way they develop from unfertilized, haploid egg cells.

In humans, the monoploid number (x) equals the haploid number (n), x = n = 23, but, in some species (especially plants), these numbers differ. Common wheat has six sets of chromosomes in the somatic cells, derived from its three different ancestral species. The gametes of common wheat are considered to be haploid, since they contain half the genetic information of somatic cells, but are not monoploid, as they still contain three complete sets of chromosomes (n = 3x).

  Diploid

Diploid (indicated by 2n = 2x) cells have two homologous copies of each chromosome, usually one from the mother and one from the father. Nearly all mammals are diploid organisms (the tetraploid viscacha rats Pipanacoctomys aureus and Tympanoctomys barrerae are the only known exceptions as of 2004[3]), although all individuals have some small fraction of cells that display polyploidy. Human diploid cells have 46 chromosomes and human haploid gametes (egg and sperm) have 23 chromosomes.

Retroviruses that contain two copies of their RNA genome in each viral particle are also said to be diploid. Examples include human foamy virus, human T-lymphotropic virus, and HIV.[4]

  Homoploid

"Homoploid" means "at the same ploidy level", i.e. having the same number of homologous chromosomes. For example, homoploid hybridization is hybridization where the offspring have the same ploidy level as the two parental species. This contrasts with a common situation in plants where chromosome doubling accompanies, or happens soon after hybridization. Similarly, homoploid speciation contrasts with polyploid speciation.

  Haploidisation

Haploidisation (haploidization) is the process of creating a haploid cell (usually from a diploid cell).

A laboratory procedure called haploidisation forces a normal cell to expel half of its chromosomal complement. In mammals this renders this cell chromosomally equal to sperm or egg. This was one of the procedures used by Japanese researchers to produce Kaguya, a fatherless mouse.

Haploidisation sometimes occurs in plants when meiotically reduced cells (usually egg cells) develop by parthenogenesis.

A rare genetic disorder that has occurred in a total of 7 recorded cases is Detrimental Haploidy Syndrome where the somatic cells of the human body are haploid after the first division of cells from fertilisation.[citation needed] As a result of this a human with this syndrome is unfortunately prone to other diseases and unable to reproduce.

  Zygoidy and azygoidy

Zygoidy is the state where the chromosomes are paired and can undergo meiosis. The zygoid state of a species may be diploid or polyploid.[5][6] In the azygoid state the chromosomes are unpaired. It may be the natural state of some asexual species or may occur after meiosis. In diploid organisms the azygoid state is monoploid. (see below for dihaploidy)

  Polyploidy

Polyploidy is the state where all cells have multiple sets of chromosomes beyond the basic set, for example, in triploids 2n = 3x, in tetraploids 2n = 4x. The chromosome sets may be from the same species or from closely related species. In the latter case, these are known as allopolyploids (or amphidiploids, which are allopolyploids that behave as if they were normal diploids). Allopolyploids are formed from the hybridization of two separate species. In plants, this probably most often occurs from the pairing of meiotically unreduced gametes, and not by diploid–diploid hybridization followed by chromosome doubling.[7] The so-called Brassica triangle is an example of allopolyploidy, where three different parent species have hybridized in all possible pair combinations to produce three new species.

Polyploidy occurs commonly in plants, but rarely in animals. Even in diploid organisms, many somatic cells are polyploid due to a process called endoreduplication where duplication of the genome occurs without mitosis (cell division).

The extreme in polyploidy occurs in the fern genus Ophioglossum, the adder's-tongues, in which polyploidy results in chromosome counts in the hundreds, or, in at least one case, well over one thousand.

  Variable or indefinite ploidy

Depending on growth conditions, prokaryotes such as bacteria may have a chromosome copy number of 1 to 4, and that number is commonly fractional, counting portions of the chromosome partly replicated at a given time. This is because under exponential growth conditions the cells are able to replicate their DNA faster than they can divide.

  Mixoploidy

Mixoploidy refers to the presence of two cell lines, one diploid and one polyploid. Though polyploidy in humans is not viable, mixoploidy has been found in live adults and children. There are two types: diploid-triploid mixoploidy, in which some cells have 46 chromosomes and some have 69, and diploid-tetraploid mixoploidy, in which some cells have 46 and some have 92 chromosomes.

  Dihaploidy and polyhaploidy

Dihaploid and polyhaploid cells are formed by haploidisation of polyploids, i.e., by halving the chromosome constitution.

Dihaploids (which are diploid) are important for selective breeding of tetraploid crop plants (notably potatoes), because selection is faster with diploids than with tetraploids. Tetraploids can be reconstituted from the diploids, for example by somatic fusion.

The term “dihaploid” was coined by Bender[8] to combine in one word the number of genome copies (diploid) and their origin (haploid). The term is well established in this original sense,[9][10] but it has also been used for doubled monoploids or doubled haploids, which are homozygous and used for genetic research.[11]

  Possible adaptive/ecological significance of variation in ploidy

A study comparing the karyotypes of endangered or invasive plants with those of their relatives found that being polyploid as opposed to diploid is associated with a 14% lower risk of being endangered, and a 20% greater chance of being invasive.[12] Polyploidy may be associated with increased vigor and adaptability.[13]

  References

  1. ^ Crosland, M. W. J.; Crozier, R. H. (1986). "Myrmecia pilosula, an Ant with Only One Pair of Chromosomes". Science 231 (4743): 1278. Bibcode 1986Sci...231.1278C. DOI:10.1126/science.231.4743.1278. PMID 17839565.  edit
  2. ^ Strasburger, E.; Noll, F.; Schenck, H.; Karsten, G. 1908. A Textbook of botany, a translation by W. H. Lang of Lehrbuch der Botanik für Hochschulen. Macmillan, London.
  3. ^ Gallardo, M. H. et al. (2004). Whole-genome duplications in South American desert rodents (Octodontidae). Biological Journal of the Linnean Society, 82, 443-451.
  4. ^ http://web.uct.ac.za/depts/mmi/jmoodie/hiv2.html
  5. ^ Books, Elsevier Science & Technology (1950-01-01). Advances in Genetics. Academic Press. ISBN 978-0-12-017603-8. 
  6. ^ Cosín, Darío J. Díaz, Marta Novo, and Rosa Fernández. “Reproduction of Earthworms: Sexual Selection and Parthenogenesis.” In Biology of Earthworms, edited by Ayten Karaca, 24:69-86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://www.springerlink.com/content/j5j72p2834355w27/.
  7. ^ Ramsey, J.; Schemske, D. W. (2002). "Neopolyploidy in Flowering Plants". Annual Review of Ecology and Systematics 33: 589. DOI:10.1146/annurev.ecolsys.33.010802.150437. http://www.plantbiology.msu.edu/files/RAMSEY%20AND%20SCHEMSKE%202002%289%29.pdf.  edit
  8. ^ Bender, K. 1963. “Über die Erzeugung und Entstehung dihaploider Pflanzen bei Solanum tuberosum”. Zeitschrift für Pflanzenzüchtung 50: 141–166.
  9. ^ Nogler, G.A. 1984. Gametophytic apomixis. In Embryology of angiosperms. Edited by B.M. Johri. Springer, Berlin, Germany. pp. 475–518.
  10. ^ * Pehu, E. 1996. The current status of knowledge on the cellular biology of potato. Potato Research 39: 429–435.
  11. ^ * Sprague, G.F., Russell, W.A., and Penny, L.H. 1960. Mutations affecting quantitative traits in the selfed progeny of double monoploid maize stocks. Genetics 45(7): 855–866.
  12. ^ Pandit, M. K.; Pocock, M. J. O.; Kunin, W. E. (2011-03-28). "Ploidy influences rarity and invasiveness in plants". Journal of Ecology (Wiley-Blackwell) 99. DOI:10.1111/j.1365-2745.2011.01838.x. 
  13. ^ Gilbert, Natasha (2011-04-06). "Ecologists find genomic clues to invasive and endangered plants". Nature News (Nature Publishing Group). DOI:10.1038/news.2011.213. http://www.nature.com/news/2011/110406/full/news.2011.213.html#B1. Retrieved 2011-04-07. 

  Bibliography

  • Griffiths, A. J. et al. 2000. An introduction to genetic analysis, 7th ed. W. H. Freeman, New York ISBN 0-7167-3520-2
   
               

   Publicidade ▼

 

todas as traduções do Ploidy


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

5142 visitantes em linha

calculado em 0,031s