definição e significado de Proteolysis | sensagent.com


   Publicitade R▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de Proteolysis

Definição

proteolysis (n.)

1.the hydrolysis of proteins into peptides and amino acids by cleavage of their peptide bonds

   Publicidade ▼

Merriam Webster

ProteolysisPro`te*ol"y*sis (?), n. [NL. See Proteolytic.] (Physiol. Chem.) The digestion or dissolving of proteid matter by proteolytic ferments.

   Publicidade ▼

Definiciones (más)

definição - Wikipedia

Ver também

proteolysis (n.)

proteolytic

Locuções

Dicionario analógico

Wikipedia

Proteolysis

                   

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. This generally occurs by the hydrolysis of the peptide bond, and is most commonly achieved by cellular enzymes called proteases, but may also occur by intramolecular digestion, as well as by non-enzymatic methods such as the action of mineral acids and heat.

Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of polypeptide chain after its synthesis may be necessary for the production of an active protein. It is also important in the regulation of some physiological and cellular processes, as well as preventing the accumulation of unwanted or abnormal proteins in cells.

Contents

  Post-translational proteolytic processing

Limited proteolysis of a polypeptide during or after translation in protein synthesis often occur for many proteins. This may involved removal of the N-terminal methionine, signal peptide, and/or the conversion of an inactive or non-functional protein to an active one. The precursor to the final functional form of protein is termed proprotein, and these proproteins may be first synthesized as preproprotein. For example, albumin is first synthesized as preproalbumin and contains an uncleaved signal peptide. This forms the proalbumin after the signal peptide is cleave, and a further processing to remove the N-terminal 6-residue propeptide yields the mature form of the protein.[1]

  Removal of N-terminal methionine

The initiating methonine (and in prokaryotes, fMet) may be removed during translation of the nascent protein. For E. coli, fMet is efficiently removed if the second residue is small and uncharged, but not if the second residue is bulky and charged.[2] In both prokaryotes and eukaryotes, the exposed N-terminal residue may determine the half-life of the protein according to the N-end rule.

  Removal of the signal sequence

Proteins that are to be targeted to a particular organelle or for secretion have an N-terminal signal peptide that directs the protein to its final destination. This signal peptide is removed by proteolysis after their transport through a membrane.

  Cleavage of polyprotein

Some proteins and most eukaryotic polypeptide hormones are synthesized as a large precursor polypeptide known as polyprotein that require proteolytic cleavage into individual smaller polypeptide chains. The polyprotein pro-opiomelanocortin (POMC) contains many polypeptide hormones. The cleavage pattern of POMC however may vary between different tissues, yielding different sets of polypeptide hormones from the same polyprotein.

Many viruses also produce their proteins initially as a single polypeptide chain that were translated from a polycistronic mRNA. This polypeptide is subsequently cleaved into individual polypeptide chains.[1]

  Cleavage of precursor proteins

Many proteins and hormones are synthesized as in the form of their precursors - (zymogens, proenzymes and prehormones). These proteins are cleaved to form their final active structures. Insulin, for example, is synthesized as preproinsulin and forms proinsulin after the signal peptide has been cleaved. To form the mature insulin, the proinsulin is then cleaved at two positions to yield two polypeptide chains linked by 2 disulphide bonds. Proinsulin is necessary for the folding of the polypeptide chain as the 2 polypeptide chains of insulin may not correctly assemble into the correct form while its precursor proinsulin do.

Proteases in particular are synthesized in the inactive form so that they may be safely stored in cells and ready for released in sufficient quantity when required, and to ensure that the protease is only activated in the correct location or context. Inappropriate activation of these proteases can be very destructive for an organism. Proteolysis of the zymogen yield an active protein; for example, when trypsinogen is cleaved to form trypsin, a slight rearrangement of the protein structure occurs which completes the active site of the protease, thereby activating the protein.

Proteolysis can therefore be a method of regulating biological processes. A good example is the blood clotting cascade whereby an initial event triggers a cascade of sequential proteolytic activation of many specific proteases, resulting in blood coagulation. The complement system of the immune response also involves a complex sequential proteolytic activation and interaction that result in an attack on invading pathogens.

  Protein degradation

Proteolytic cleavage breaks down proteins in food extracellularly into smaller peptides and amino acids so that they may be absorbed and used by an organism. Proteins in cells are also constantly being broken down into amino acids. This intracellular degradation of protein serves a number of functions - it removes damaged and abnormal protein and prevent their accumulation, and it also serves to regulate cellular processes by removing enzymes and regulatory proteins that are no longer needed. The amino acids may then be reused for protein synthesis.

  Structure of a proteasome. Its active sites are inside the tube (blue) where proteins are degraded.

  Lysosome and proteasome

The intracellular degradation of protein may be achieved in two ways - proteolysis in lysosome, or a ubiquitin-dependent process which targets unwanted proteins to proteasome. The autophagy-lysosomal pathway is normally a non-selective process but may become selective upon starvation whereby protein with peptide sequence KFERQ or similar are selectively broken down. The lysosome contains a large number of proteases such as cathepsins.

The ubiquitin-mediated process is selective. Proteins marked for degradation are covalently linked to ubiquitin. Many molecules of ubiquitin may be linked in tandem to a protein destined for degradation. The polyubiquinated protein is targeted to an ATP-dependent protease complex, the proteasome. The ubiquitin is released and reused, and the targeted protein is degraded.

  Rate of intracellular protein degradation

Different proteins are degraded at different rate. Abnormal proteins are quickly degraded, while the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological conditions. One of the most rapidly degraded protein is ornithine decarboxylase which has a half-life of 11 minutes. In contrast, other proteins like actin and myosin have half-life of a month or more, while haemoglobin essentially lasts for the entire life-time of erythrocyte.[3]

The N-end rule may partially determine the half-life of a protein, and proteins with segments rich in proline, glutamine, serine, and threonine (the so-called PEST proteins) have short half-life.[4] Other factors suspected to affect degradation rate include the rate deamination of glutamine and asparagine and oxidation of cystein, histidine and methionine, the absence of stabilizing ligands, the presence of attached carbohydrate or phosphate groups, the presence of free α-amino group, the negative charge of protein, and the flexibility and stability of the protein.[3]

The rate of proteolysis may also depend on the physiological state of the cell, such as its hormonal state as well as nutritional status. In time of starvation, the rate of protein degradation increases.

  Digestion

In human digestion, proteins in food are broken down into smaller peptide chains by digestive enzymes such as pepsin, trypsin, chymotrypsin, and elastase, and into amino acids by various enzymes such as carboxypeptidase, aminopeptidase and dipeptidase. It is necessary to break down proteins into small peptides (tripeptides and dipeptides) and amino acids so they can be absorbed by the intestines, and the absorbed tripeptides and dipeptides are also further broken into amino acids intracellularly before they enter the bloodstream.[5] Different enzymes have different specificity for their substrate; trypsin for example cleaves the peptide bond after a positively charge residue (arginine and lysine), chymotrypsin cleaves the bond after an aromatic residue (phenylalanine, tyrosine, and tryptophan), elastase cleaves the bond after a small non-polar residue such as alanine or glycine.

In order to prevent inappropriate or premature activation of the digestive enzymes (they may, for example, trigger pancreatic self-digestion), these enzymes are secreted as inactive zymogen. The precursor of pepsin, pepsinogen, is secreted by the stomach, and is activated only in only in the acidic environment found in stomach. The pancreas secretes the precursors of a number of proteases, such trypsin and chymotrypsin. The zymogen of trypsin is trypsinogen which is activated by a very specific protease, enterokinase, which is secreted by the mucosa of the duodenum. The trypsin, once activated, can also cleave other trypsinogen (albeit slower than enterokinase) as well as the precursors of other proteases such as chymotrypsin and carboxypeptidase.

In bacteria, a similar strategy of employing an inactive zymogen or prezymogen is used. Subtilisin which is produced by Bacillus subtilis is produced as preprosubtilisin, and is released only if the signal peptide is cleaved and autocatalytic proteolytic activation has occurred.

  Proteolysis in cellular regulation

Proteolysis is also involved in the regulation of many cellular processes by activating or deactivating enzymes, transcription factors, and receptors, for example in the biosynthesis of cholesterol,[6] or the mediation of thrombin signalling through protease-activated receptors.[7]

Some enzymes at important metabolic control points such as ornithine decarboxylase is regulated entirely by its rate of synthesis and its rate of degradation. Other rapidly degraded proteins include the protein products of proto-oncogenes which play central roles in the regulation of cell growth.

  Cell cycle regulation

Cyclins are a group of proteins that activate kinases involved in cell division. The degradation of cyclins is the key step that governs the exit from mitosis and progress into the next cell cycle.[8] Cyclins accumulate in the course the cell cycle, then abruptly disappear just before the anaphase of mitosis. The cyclins are removed via a ubiquitin-mediated proteolytic pathway.

  Apoptosis

Caspases are a important group of proteases involved in apoptosis.

  Regulation in proteolysis

Protease may have one or more regulatory domains -

  Proteolysis and diseases

Abnormal proteolytic activity are associated with many diseases. In pancreatitis, leakage of proteases and their premature activation in the pancreas results in the self-digestion of the pancreas. People with diabetes mellitus may have increased lysosomal activity and the degradation of some proteins can increase significantly. Chronic inflammatory diseases such as rheumatoid arthritis may involve the release of lysosomal enzymes into extracellular space which break down surrounding tissues. Ineffective removal of abnormal protein in cells may result in many age-related neurological diseases.

Other diseases linked to aberrant proteolysis include muscular dystrophy, degenerative skin disorders, respiratory and gastrointestinal diseases, and malignancy.

  Laboratory applications

Proteolysis is also used in research and diagnostic applications:

  Venoms

Certain types of venom, such as those produced by venomous snakes, can also cause proteolysis. These venoms are, in fact, complex digestive fluids that begin their work outside of the body. Proteolytic venoms cause a wide range of toxic effects,[9] including effects that are:

  See also

  References

  1. ^ a b Thomas E Creighton (1993). Proteins: Structures and Molecular Properties (2nd ed.). W H Freeman and Company. pp. 78–86. ISBN 0-7167-2317-4. 
  2. ^ P H Hirel, M J Schmitter, P Dessen, G Fayat, and S Blanquet (1989). "Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid". Proc Natl Acad Sci U S A 86 (21): 8247–51. DOI:10.1073/pnas.86.21.8247. PMC 298257. PMID 2682640. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=298257. 
  3. ^ a b Thomas E Creighton (1993). "Chapter 10 - Degradation". Proteins: Structures and Molecular Properties (2nd ed.). W H Freeman and Company. pp. 463–473. ISBN 0-7167-2317-4. 
  4. ^ Voet & Voet (1995). Biochemisty (2nd ed.). John Wiley & Sons. pp. 1010–1014. ISBN 0-471-58651-X. 
  5. ^ Silk DB (1974). "Progress report. Peptide absorption in man". Gut 15 (6): 494–501. PMC 1413009. PMID 4604970. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1413009. 
  6. ^ Michael S. Brown and Joseph L. Goldstein (May 1997). "The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor". Cell 89: 331–340. DOI:10.1016/S0092-8674(00)80213-5. PMID 9150132. 
  7. ^ Shaun R. Coughlin (2000). "Thrombin signalling and protease-activated receptors". Nature 407 (6801): 258–264. DOI:10.1038/35025229. PMID 11001069. 
  8. ^ Glotzer M, Murray AW, Kirschner MW (1991). "Cyclin is degraded by the ubiquitin pathway". Nature 349 (6305): 132–8. DOI:10.1038/349132a0. PMID 1846030. 
  9. ^ Hayes WK. 2005. Research on Biological Roles and Variation of Snake Venoms. Loma Linda University.

  External links

   
               

 

todas as traduções do Proteolysis


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

4983 visitantes em linha

calculado em 0,015s