definição e significado de Sunlight | sensagent.com


   Publicitade E▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de Sunlight

Definição

sunlight (n.)

1.the rays of the sun"the shingles were weathered by the sun and wind"

   Publicidade ▼

Merriam Webster

SunlightSun"light` (?), n. The light of the sun. Milton.

   Publicidade ▼

Definiciones (más)

definição - Wikipedia

Sinónimos

sunlight (n.)

sun, sunshine

Locuções

Afraid of Sunlight • Alsatian Sunlight • Artificial sunlight • Dell Bridge, Port Sunlight • Effect of sunlight on mushrooms • Golden Sunlight mine • Heat and Sunlight • In November Sunlight • In Sunlight, In a Beautiful Garden • In the Sunlight • John Sunlight • Joseph Sunlight • Livin' in the Sunlight, Lovin' in the Moonlight • Lyceum, Port Sunlight • No Sunlight • Port Sunlight • Port Sunlight railway station • Strands of Sunlight • Sunlight (album) • Sunlight (cleaning product) • Sunlight (disambiguation) • Sunlight (song) • Sunlight Electric • Sunlight Foundation • Sunlight House • Sunlight Makes Me Paranoid • Sunlight Park • Sunlight Peak • Sunlight Pours Down • Sunlight Productions • Sunlight Saunas • Sunlight Ski Area • Sunlight Solar Energy • Sunlight Studio • Sunlight at Secondhand • The Remaining Sunlight • The Sunlight Dialogues • They Marched into Sunlight • Underwater Sunlight

Dicionario analógico

Wikipedia

Sunlight

                   
"Sunshine" redirects here. For natural lighting of interior spaces by admitting sunlight, see Daylighting. For solar energy available from sunlight, see Insolation. For other uses, see Sunlight (disambiguation) and Sunshine (disambiguation).
  Sunlight shining through clouds, giving rise to crepuscular rays.

Sunlight, in the broad sense, is the total frequency spectrum of electromagnetic radiation given off by the Sun, particularly infrared, visible, and ultraviolet light. On Earth, sunlight is filtered through the Earth's atmosphere, and solar radiation is obvious as daylight when the Sun is above the horizon.

When the direct solar radiation is not blocked by clouds, it is experienced as sunshine, a combination of bright light and radiant heat. When it is blocked by the clouds or reflects off of other objects, it is experienced as diffused light.

The World Meteorological Organization uses the term "sunshine duration" to mean the cumulative time during which an area receives direct irradiance from the Sun of at least 120 watts per square meter.[1]

Sunlight may be recorded using a sunshine recorder, pyranometer or pyrheliometer. Sunlight takes about 8.3 minutes to reach the Earth.

On average, it takes energy between 10,000 and 170,000 years to leave the sun's interior and then be emitted from the surface as light.[2]

Direct sunlight has a luminous efficacy of about 93 lumens per watt of radiant flux. Bright sunlight provides illuminance of approximately 100,000 lux or lumens per square meter at the Earth's surface.

Sunlight is a key factor in photosynthesis, a process vital for many living beings on Earth.

Contents

  Composition

  Solar irradiance spectrum above atmosphere and at surface

The spectrum of the Sun's solar radiation is close to that of a black body with a temperature of about 5,800 K.[3] The Sun emits EM radiation across most of the electromagnetic spectrum. Although the Sun produces Gamma rays as a result of the nuclear fusion process, these super high energy photons are converted to lower energy photons before they reach the Sun's surface and are emitted out into space. As a result, the Sun doesn't give off any gamma rays. The Sun does, however, emit X-rays, ultraviolet, visible light, infrared, and even radio waves.[4] When ultraviolet radiation is not absorbed by the atmosphere or other protective coating, it can cause damage to the skin known as sunburn or trigger an adaptive change in human skin pigmentation.

The spectrum of electromagnetic radiation striking the Earth's atmosphere spans a range of 100 nm to about 1 mm. This can be divided into five regions in increasing order of wavelengths:[5]

  • Ultraviolet C or (UVC) range, which spans a range of 100 to 280 nm. The term ultraviolet refers to the fact that the radiation is at higher frequency than violet light (and, hence also invisible to the human eye). Owing to absorption by the atmosphere very little reaches the Earth's surface (Lithosphere). This spectrum of radiation has germicidal properties, and is used in germicidal lamps.
  • Ultraviolet B or (UVB) range spans 280 to 315 nm. It is also greatly absorbed by the atmosphere, and along with UVC is responsible for the photochemical reaction leading to the production of the ozone layer.
  • Ultraviolet A or (UVA) spans 315 to 400 nm. It has been traditionally held as less damaging to the DNA, and hence used in tanning and PUVA therapy for psoriasis.
  • Visible range or light spans 380 to 780 nm. As the name suggests, it is this range that is visible to the naked eye.
  • Infrared range that spans 700 nm to 106 nm (1 mm). It is responsible for an important part of the electromagnetic radiation that reaches the Earth. It is also divided into three types on the basis of wavelength:
    • Infrared-A: 700 nm to 1,400 nm
    • Infrared-B: 1,400 nm to 3,000 nm
    • Infrared-C: 3,000 nm to 1 mm

  Calculation

To calculate the amount of sunlight reaching the ground, both the elliptical orbit of the Earth and the attenuation by the Earth's atmosphere have to be taken into account. The extraterrestrial solar illuminance (Eext), corrected for the elliptical orbit by using the day number of the year (dn), is given by[6]

E_{\rm ext}= E_{\rm sc} \cdot \left(1+0.033412 \cdot \cos\left(2\pi\frac{{\rm dn}-3}{365}\right)\right),

where dn=1 on January 1; dn=2 on January 2; dn=32 on February 1, etc. In this formula dn-3 is used, because in modern times Earth's perihelion, the closest approach to the Sun and therefore the maximum Eext occurs around January 3 each year. The value of 0.033412 is determined knowing that the ratio between the perihelion (0.98328989 AU) squared and the aphelion (1.01671033 AU) squared should be approximately 0.935338.

The solar illuminance constant (Esc), is equal to 128×103 lx. The direct normal illuminance (Edn), corrected for the attenuating effects of the atmosphere is given by:

E_{\rm dn}=E_{\rm ext}\,e^{-cm},

where c is the atmospheric extinction coefficient and m is the relative optical airmass.

  Solar constant

The solar constant, a measure of flux density, is the amount of incoming solar electromagnetic radiation per unit area that would be incident on a plane perpendicular to the rays, at a distance of one astronomical unit (AU) (roughly the mean distance from the Sun to the Earth). The "solar constant" includes all types of solar radiation, not just the visible light. Its average value was thought to be approximately 1.366 kW/m²,[7] varying slightly with solar activity, but recent recalibrations of the relevant satellite observations indicate a value closer to 1.361 kW/m² is more realistic.[8]

  Total (TSI) and spectral solar irradiance (SSI) upon Earth

Total Solar Irradiance upon Earth (TSI) was earlier measured by satellite to be roughly 1.366 kilowatts per square meter (kW/m²),[7][9][10] but most recently NASA cites TSI as "1361 W/m² as compared to ~1366 W/m² from earlier observations [Kopp et al., 2005]", based on regular readings from NASA's Solar Radiation and Climate Experiment(SORCE) satellite, active since 2003,[11] noting that this "discovery is critical in examining the energy budget of the planet Earth and isolating the climate change due to human activities." Furthermore the Spectral Irradiance Monitor (SIM) has found in the same period that spectral solar irradiance (SSI) at UV (ultraviolet) wavelength corresponds in a less clear, and probably more complicated fashion, with earth's climate responses than earlier assumed, fueling broad avenues of new research in "the connection of the Sun and stratosphere, troposphere, biosphere, ocean, and Earth’s climate".[11]

  Intensity in the Solar System

Different bodies of the Solar System receive light of an intensity inversely proportional to the square of their distance from Sun. A rough table comparing the amount of solar radiation received by each planet in the Solar System follows (from data in [1]):

Planet Perihelion - Aphelion
distance (AU)
Solar radiation
maximum and minimum
(W/m²)
Mercury 0.3075 – 0.4667 14,446 – 6,272
Venus 0.7184 – 0.7282 2,647 – 2,576
Earth 0.9833 – 1.017 1,413 – 1,321
Mars 1.382 – 1.666 715 – 492
Jupiter 4.950 – 5.458 55.8 – 45.9
Saturn 9.048 – 10.12 16.7 – 13.4
Uranus 18.38 – 20.08 4.04 – 3.39
Neptune 29.77 – 30.44 1.54 – 1.47

The actual brightness of sunlight that would be observed at the surface depends also on the presence and composition of an atmosphere. For example Venus' thick atmosphere reflects more than 60% of the solar light it receives. The actual illumination of the surface is about 14,000 lux, comparable to that on Earth "in the daytime with overcast clouds".[12]

Sunlight on Mars would be more or less like daylight on Earth wearing sunglasses, and as can be seen in the pictures taken by the rovers, there is enough diffuse sky radiation that shadows would not seem particularly dark. Thus it would give perceptions and "feel" very much like Earth daylight.

For comparison purposes, sunlight on Saturn is slightly brighter than Earth sunlight at the average sunset or sunrise (see daylight for comparison table). Even on Pluto the sunlight would still be bright enough to almost match the average living room. To see sunlight as dim as full moonlight on the Earth, a distance of about 500 AU (~69 light-hours) is needed; there are only a handful of objects in the solar system known to orbit farther than such a distance, among them 90377 Sedna and (87269) 2000 OO67.

  Surface illumination

The spectrum of surface illumination depends upon solar elevation due to atmospheric effects, with the blue spectral component from atmospheric scatter dominating during twilight before and after sunrise and sunset, respectively, and red dominating during sunrise and sunset. These effects are apparent in natural light photography where the principal source of illumination is sunlight as mediated by the atmosphere.

According to Craig Bohren, "preferential absorption of sunlight by ozone over long horizon paths gives the zenith sky its blueness when the sun is near the horizon".[13]

See diffuse sky radiation for more details.

  Climate effects

On Earth, solar radiation is obvious as daylight when the sun is above the horizon. This is during daytime, and also in summer near the poles at night, but not at all in winter near the poles. When the direct radiation is not blocked by clouds, it is experienced as sunshine, combining the perception of bright white light (sunlight in the strict sense) and warming. The warming on the body, the ground and other objects depends on the absorption (electromagnetic radiation) of the electromagnetic radiation in the form of heat.

The amount of radiation intercepted by a planetary body varies inversely with the square of the distance between the star and the planet. The Earth's orbit and obliquity change with time (over thousands of years), sometimes forming a nearly perfect circle, and at other times stretching out to an orbital eccentricity of 5% (currently 1.67%). The total insolation remains almost constant due to Kepler's second law,

\tfrac{2A}{r^2}dt = d\theta,

where A is the "areal velocity" invariant. That is, the integration over the orbital period (also invariant) is a constant.

\int_{0}^{T} \tfrac{2A}{r^2}dt = \int_{0}^{2\pi} d\theta = \mathrm{constant}

If we assume the solar radiation power P as a constant over time and the solar irradiation given by the inverse-square law, we obtain also the average insolation as a constant.

But the seasonal and latitudinal distribution and intensity of solar radiation received at the Earth's surface also varies.[14] For example, at latitudes of 65 degrees the change in solar energy in summer & winter can vary by more than 25% as a result of the Earth's orbital variation. Because changes in winter and summer tend to offset, the change in the annual average insolation at any given location is near zero, but the redistribution of energy between summer and winter does strongly affect the intensity of seasonal cycles. Such changes associated with the redistribution of solar energy are considered a likely cause for the coming and going of recent ice ages (see: Milankovitch cycles).

  Past variations in solar irradiance

Space-based observations of solar irradiance started in 1978. These measurements show that the solar constant is not constant. It varies with the 11-year sunspot solar cycle. When going further back in time, one has to rely on irradiance reconstructions, using sunspots for the past 400 years or cosmogenic radionuclides for going back 10,000 years. Such reconstructions have been done [15][16][17][18]. These studies show that solar irradiance does vary with distinct periodicities such as: 11 years (Schwabe), 88 years (Gleisberg cycle), 208 years (DeVries cycle) and 1,000 years (Eddy cycle).

  Life on Earth

Striking a Solar Balance.OGG
 
  This short film explores the vital connection between Earth and the Sun.

The existence of nearly all life on Earth is fueled by light from the sun. Most autotrophs, such as plants, use the energy of sunlight, combined with carbon dioxide and water, to produce simple sugars—a process known as photosynthesis. These sugars are then used as building blocks and in other synthetic pathways which allow the organism to grow.

Heterotrophs, such as animals, use light from the sun indirectly by consuming the products of autotrophs, either by consuming autotrophs, by consuming their products or by consuming other heterotrophs. The sugars and other molecular components produced by the autotrophs are then broken down, releasing stored solar energy, and giving the heterotroph the energy required for survival. This process is known as cellular respiration.

In prehistory, humans began to further extend this process by putting plant and animal materials to other uses. They used animal skins for warmth, for example, or wooden weapons to hunt. These skills allowed humans to harvest more of the sunlight than was possible through glycolysis alone, and human population began to grow.

During the Neolithic Revolution, the domestication of plants and animals further increased human access to solar energy. Fields devoted to crops were enriched by inedible plant matter, providing sugars and nutrients for future harvests. Animals which had previously only provided humans with meat and tools once they were killed were now used for labour throughout their lives, fueled by grasses inedible to humans.

The more recent discoveries of coal, petroleum and natural gas are modern extensions of this trend. These fossil fuels are the remnants of ancient plant and animal matter, formed using energy from sunlight and then trapped within the earth for millions of years. Because the stored energy in these fossil fuels has accumulated over many millions of years, they have allowed modern humans to massively increase the production and consumption of primary energy. As the amount of fossil fuel is large but finite, this cannot continue indefinitely, and various theories exist as to what will follow this stage of human civilization (e.g. alternative fuels, Malthusian catastrophe, new urbanism, peak oil).

  Cultural aspects

  Claude Monet: Le déjeuner sur l'herbe

The effect of sunlight is relevant to painting, evidenced for instance in works of Claude Monet on outdoor scenes and landscapes.

Many people find direct sunlight to be too bright for comfort, especially when reading from white paper upon which the sun is directly shining. Indeed, looking directly at the sun can cause long-term vision damage. To compensate for the brightness of sunlight, many people wear sunglasses. Cars, many helmets and caps are equipped with visors to block the sun from direct vision when the sun is at a low angle. Sunshine is often blocked from entering buildings through the use of walls, window blinds, awnings, shutters or curtains, or by nearby shade trees.

In colder countries, many people prefer sunnier days and often avoid the shade. In hotter countries the converse is true; during the midday hours many people prefer to stay inside to remain cool. If they do go outside, they seek shade which may be provided by trees, parasols, and so on.

In Hinduism the sun is considered to be a god as it is the source of life and energy on earth.

  Sunbathing

Sunbathing is a popular leisure activity in which a person sits or lies in direct sunshine. People often sunbathe in comfortable places where there is ample sunlight. Some common places for sunbathing include beaches, open air swimming pools, parks, gardens, and sidewalk cafés. Sunbathers typically wear limited amounts of clothing or some simply go nude. For some, an alternative to sunbathing is the use of a sunbed that generates ultraviolet light and can be used indoors regardless of outdoor weather conditions and amount of sunlight.

For many people with pale or brownish skin, one purpose for sunbathing is to darken one's skin color (get a sun tan) as this is considered in some cultures to be beautiful, associated with outdoor activity, vacations/holidays, and health. Some people prefer naked sunbathing so that an "all-over" or "even" tan can be obtained, sometimes as part of a specific lifestyle.

For people suffering from psoriasis, sunbathing is an effective way of healing the symptoms.

Skin tanning is achieved by an increase in the dark pigment inside skin cells called melanocytes and it is actually an automatic response mechanism of the body to sufficient exposure to ultraviolet radiation from the sun or from artificial sunlamps. Thus, the tan gradually disappears with time, when one is no longer exposed to these sources.

  Effects on human health

The body produces vitamin D from sunlight (specifically from the UVB band of ultraviolet light), and excessive seclusion from the sun can lead to deficiency unless adequate amounts are obtained through diet.

Sunburn can have mild to severe inflammation effects on skin; this can be avoided by using a proper sunscreen cream or lotion or by gradually building up melanocytes with increasing exposure. Another detrimental effect of UV exposure is accelerated skin aging (also called skin photodamage), which produces a difficult to treat cosmetic effect. Some people are concerned that ozone depletion is increasing the incidence of such health hazards. A 10% decrease in ozone could cause a 25% increase in skin cancer.[19]

A lack of sunlight, on the other hand, is considered one of the primary causes of seasonal affective disorder (SAD), a serious form of the "winter blues". SAD occurrence is more prevalent in locations further from the tropics, and most of the treatments (other than prescription drugs) involve light therapy, replicating sunlight via lamps tuned to specific wavelengths of visible light, or full-spectrum bulbs.

A recent study indicates that more exposure to sunshine early in a person’s life relates to less risk from multiple sclerosis (MS) later in life.[20]

  See also

  References

  1. ^ "Chapter 8 – Measurement of sunshine duration" (PDF). CIMO Guide. World Meteorological Organization. http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO%20Guide%207th%20Edition,%202008/Part%20I/Chapter%208.pdf. Retrieved 2008-12-01. 
  2. ^ "NASA: The 8-minute travel time to Earth by sunlight hides a thousand-year journey that actually began in the core". NASA, sunearthday.nasa.gov. http://sunearthday.nasa.gov/2007/locations/ttt_sunlight.php. Retrieved 2012-02-12. 
  3. ^ NASA Solar System Exploration - Sun: Facts & Figures retrieved 27 April 2011 "Effective Temperature ... 5777 K"
  4. ^ "The Multispectral Sun, from the National Earth Science Teachers Association". Windows2universe.org. 2007-04-18. http://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html. Retrieved 2012-02-12. 
  5. ^ Naylor, Mark; Kevin C. Farmer (1995). "Sun damage and prevention". Electronic Textbook of Dermatology. The Internet Dermatology Society. http://www.telemedicine.org/sundam/sundam2.4.1.html. Retrieved 2008-06-02. 
  6. ^ C. KANDILLI and K. ULGEN. "Solar Illumination and Estimating Daylight Availability of Global Solar Irradiance". Energy Sources. 
  7. ^ a b "Satellite observations of total solar irradiance". Acrim.com. http://acrim.com/TSI%20Monitoring.htm. Retrieved 2012-02-12. 
  8. ^ G. Kopp; J. Lean (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophys. Res. Lett.: L01706. Bibcode 2011GeoRL..3801706K. DOI:10.1029/2010GL045777. 
  9. ^ Willson, R. C., and A. V. Mordvinov (2003), Secular total solar irradiance trend during solar cycles 21–23, Geophys. Res. Lett., 30(5), 1199, doi:10.1029/2002GL016038 ACR
  10. ^ "Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present". http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant. Retrieved 2005-10-05. 
  11. ^ a b "NASA Goddard Space Flight Center: Solar Radiation". Atmospheres.gsfc.nasa.gov. 2012-02-08. http://atmospheres.gsfc.nasa.gov/climate/index.php?section=136. Retrieved 2012-02-12. 
  12. ^ "The Unveiling of Venus: Hot and Stifling". Science News 109 (25): 388. 1976-06-19. JSTOR 3960800. "100 watts per square meter ... 14,000 lux ... corresponds to ... daytime with overcast clouds" 
  13. ^ Craig F. Bohren. "Atmospheric Optics". http://homepages.wmich.edu/%7Ekorista/atmospheric_optics.pdf. 
  14. ^ "Graph of variation of seasonal and latitudinal distribution of solar radiation". Museum.state.il.us. 2007-08-30. http://www.museum.state.il.us/exhibits/ice_ages/insolation_graph.html. Retrieved 2012-02-12. 
  15. ^ Wang et al. (2005). The Astrophysical Journal, Volume 625, issue 1, pages 522-538, dx.doi.org/10.1086/429689.
  16. ^ Steinhilber et al. (2009), Geophysical Research Letters, Volume 36, L19704, http://dx.doi.org/10.1051/0004-6361/200811446
  17. ^ Vieira et al. (2011), Astronomy&Astrophysics, Volume 531, A6, http://dx.doi.org/10.1051/0004-6361/201015843
  18. ^ Steinhilber et al.(2012), Proceedings of the National Academy of Sciences, Early Edition http://dx.doi.org/10.1073/pnas.1118965109
  19. ^ Ozone Hole Consequences retrieved 30 October 2008
  20. ^ "NEUROLOGY 2007;69:381-388". Neurology.org. 2007-07-24. http://www.neurology.org/cgi/content/abstract/69/4/381?etoc. Retrieved 2012-02-12. 

  Further reading

  External links

   
               

 

todas as traduções do Sunlight


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

5195 visitantes em linha

calculado em 0,031s