definição e significado de pulsar | sensagent.com


   Publicitade E▼


 » 
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês
alemão búlgaro chinês croata dinamarquês eslovaco esloveno espanhol estoniano farsi finlandês francês grego hebraico hindi holandês húngaro indonésio inglês islandês italiano japonês korean letão língua árabe lituano malgaxe norueguês polonês português romeno russo sérvio sueco tailandês tcheco turco vietnamês

Definição e significado de pulsar

DEUM

pulsar1 v tr (Se conjuga como amar) 1 Hacer vibrar las cuerdas de un instrumento musical tocándolas con los dedos o por medio de un mecanismo: pulsar una guitarra, pulsar un clavecín 2 Calcular o examinar las propiedades o consecuencias de algo para encontrar la mejor manera de tratarlo, abordarlo, etc: pulsar el alcance de la huelga.

pulsar2 s m (Astron) Fuente celeste que emite ondas de radio en impulsos muy intensos y breves que se repiten con gran rapidez, como las estrellas de neutrones: el parpadeo de un pulsar.

Definição

definição - Wikipedia

   Publicidade ▼

Sinónimos

   Publicidade ▼

Ver também

pulsar (v. trans.)

pulsación

Locuções

Dicionario analógico






Wikipedia

Púlsar

                   
  Púlsar de la Nebulosa del Cangrejo. Esta imagen combina imágenes del Telescopio espacial Hubble (rojo), e imágenes en rayos X obtenidas por el Telescopio Chandra (azul).

Un púlsar es una estrella de neutrones que emite radiación periódica. Los púlsares poseen un intenso campo magnético que induce la emisión de estos pulsos de radiación electromagnética a intervalos regulares relacionados con el periodo de rotación del objeto.

Las estrellas de neutrones pueden girar sobre sí mismas hasta varios cientos de veces por segundo; un punto de su superficie puede estar moviéndose a velocidades de hasta 70.000 km/s. De hecho, las estrellas de neutrones que giran tan rápidamente se expanden en su ecuador debido a esta velocidad vertiginosa. Esto también implica que estas estrellas tengan un tamaño de unos pocos miles de metros, entre 10 y 20 kilómetros, ya que la fuerza centrífuga generada a esta velocidad es enorme y sólo el potente campo gravitatorio de una de estas estrellas (dada su enorme densidad) es capaz de evitar que se despedace.[1] [2]

El efecto combinado de la enorme densidad de estas estrellas con su intensísimo campo magnético (generado por los protones y electrones de la superficie girando alrededor del centro a semejantes velocidades) causa que las partículas que se acercan a la estrella desde el exterior (como, por ejemplo, moléculas de gas o polvo interestelar), se aceleren a velocidades extremas y realicen espirales cerradísimas hacia los polos magnéticos de la estrella. Por ello, los polos magnéticos de una estrella de neutrones son lugares de actividad muy intensa: emiten chorros de radiación en el rango del radio, rayos X o rayos gamma, como si fueran cañones de radiación electromagnética muy intensa y muy colimada.

Por razones aún no muy bien entendidas, los polos magnéticos de muchas estrellas de neutrones no están sobre el eje de rotación. El resultado es que los "cañones de radiación" de los polos magnéticos no apuntan siempre en la misma dirección, sino que rotan con la estrella.

Es posible entonces que, mirando hacia un punto determinado del firmamento, recibamos un "chorro" de rayos X durante un instante. El chorro aparece cuando el polo magnético de la estrella mira hacia la Tierra, deja de apuntarnos una milésima de segundo después debido a la rotación, y aparece de nuevo cuando el mismo polo vuelve a apuntar hacia la Tierra. Lo que percibimos entonces desde ese punto del cielo son pulsos de radiación con un periodo muy exacto, que se repiten una y otra vez (lo que se conoce como "efecto faro") cuando el chorro se orienta hacia nuestro planeta. Por eso, este tipo de estrellas de neutrones "pulsantes" se denominan púlsares (del inglés pulsating star, "estrella pulsante", aunque esta denominación se aplica con más propiedad a otro grupo de estrellas variables). Si la estrella está orientada de manera adecuada, podemos detectarla y analizar su velocidad de rotación. El periodo de la pulsación de estos objetos lógicamente aumenta cuando disminuye su velocidad de rotación. A pesar de ello, algunos púlsares con periodos extremadamente constantes han sido utilizados para calibrar relojes de precisión.

  Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul.

Contenido

  Descubrimiento del primer púlsar

La señal del primer púlsar detectado tenía un periodo de 1,33730113 s. Este tipo de señales únicamente se puede detectar con un radiotelescopio. De hecho, cuando en julio de 1967 Jocelyn Bell y Antony Hewish detectaron estas señales de radio de corta duración y extremadamente regulares, pensaron que podrían haber establecido contacto con una civilización extraterrestre, por lo que llamaron tentativamente a su fuente LGM (Little Green Men u Hombrecitos verdes). Tras una rápida búsqueda se descubrieron 3 nuevos púlsares que emitían en radio a diferentes frecuencias, por lo que pronto se concluyó que estos objetos debían ser producto de fenómenos naturales. Anthony Hewish recibió en 1974 el Premio Nobel de Física por este descubrimiento y por el desarrollo de su modelo teórico. Jocelyn Bell no recibió condecoración porque sólo era una estudiante de doctorado, aunque fuera ella quien advirtió la primera señal de radio.

Hoy en día se conocen más de 600 púlsares con periodos de rotación que van desde el milisegundo a unos pocos segundos, con un promedio de 0,65 s. La precisión con que se ha medido el periodo de estos objetos es de una parte en 100 millones. El más famoso de todos los púlsares es quizás el que se encuentra en el centro de la Nebulosa del Cangrejo, denominado PSR0531+121, con un periodo de 0,033 s. Este púlsar se encuentra en el mismo punto en el que astrónomos chinos registraron una brillante supernova en el año 1054 y permite establecer la relación entre supernova y estrella de neutrones, a saber, que ésta es remanente de la explosión de aquélla.

  Planetas púlsar

En el primer grupo de planetas extrasolares descubiertos que orbitan un púlsar, el PSR B1257+12, cuyo periodo es del orden de los milisegundos. Las pequeñas variaciones de su periodo de emisión en el radio sirvieron para detectar una ligerísima oscilación periódica con una amplitud máxima en torno a 0,7 m/s. Los radioastrónomos Aleksander Wolszczan y Dale A. Frail interpretaron estas observaciones como causadas por un grupo de tres planetas en órbitas casi circulares a 0,2, 0,36 y 0,47 ua del púlsar central y con masas de 2, 4 y 4 masas terrestres respectivamente. Este descubrimiento, muy inesperado, causó un gran impacto en la comunidad científica.

  Púlsares de rayos X

Los púlsares de rayos x son sistemas de estrellas binarias que se componen de un púlsar y de una estrella normalmente joven de tipo O y B.
La estrella primaria emite viento estelar de su superficie y radiación, y éstos son atrapados por la estrella compañera que produce rayos x.
El primer púlsar de rayos x conocido es el estrella compacta situada en el sistema Cen X-3.

  Referencias

  Enlaces externos

   
               

 

todas as traduções do pulsar


Conteùdo de sensagent

  • definição
  • sinónimos
  • antónimos
  • enciclopédia

 

5257 visitantes em linha

calculado em 0,031s